Further adventures in chemistry

I’m sure you’re all familiar with the endochronic compound thiotimoline, first reported by noted biochemist Dr. Asimov. No? His original publication on the subject is a model of scientific writing, as is apparent in this excerpt from “The Endochronic Properties of Resublimated Thiotimoline” (Asimov, 1948).

It has been long known that the solubility of organic compounds in polar solvents such as water is enhanced by the presence upon the hydrocarbon nucleus of hydrophilic – i.e., water-loving – groups, such as the hydroxy (-OH), amino (-NH2), or sulfonic acid (SO3H) groups. Where the physical characteristics of two given compounds – particularly the degree of subdivision of the material – are equal, then the time of solution – expressed in seconds per gram of material per milli-liter of solvent – decreases with the number of hydrophilic groups present. Catechol, for instance, with two hydroxy groups on the benzene nucleus, dissolves considerably more quickly than does phenol, with only one hydroxy group on the nucleus. Feinschreiber and Hravlek in their studies on the problem have contended that with increasing hydrophilism, the time of solution approaches zero. That this analysis is not entirely correct was shown when it was discovered that the compound thiotimoline will dissolve in water – in the proportions of 1 gm./ml. – in minus 1.12 seconds. That is, it will dissolve before the water is added.

Not current on your organic chemistry? Then just read the final sentence of the above excerpt, though I do recommend making an attempt at the full paper linked above.

Dr. Asimov went on to publish several more studies on the subject, including “The Micropsychiatric Applications of Thiotimoline” (Asimov, 1953) and “The Marvellous Properties of Thiotimoline” (Asimov, 1957).

Other scientists have picked up the topic, expanding greatly on the potential applications of this compound.

A 1989 letter to the British Medical Journal clarifies the history of thiotimoline research (Croall, 1989).

A researcher at Sun Microsystems has been pursing the use of thiotimoline for debugging computer systems (Davidson, 2001):

We have used thiotimoline to build a silicon debugging platform that works as follows. We apply a functional test to two units under test (UUTs) running in lockstep. When the test system detects an error in unit A, a signal alerts special equipment to add water to a thiotimoline sample. Exactly 1.12 seconds before the water is added, the thiotimoline dissolves. This action triggers the sending of a signal, which travels to unit B and stops its clock after a programmable number of cycles. The 1 s between the addition of water and the thiotimoline’s dissolution is far longer than the error latency.

“Yet Another Application of Thiotimoline” appeared in the same journal, IEEE Design & Test of Computers, in the subsequent year (Nelson, 2002). The author proposes a thiotimoline-based keyboard to help overcome writer’s block.

Dr. Asimov himself returned to the study of thiotimoline in 2007, to propose an application in the social sciences: using a telechronic battery to prevent election fraud.

You can follow any responses to this entry through the RSS 2.0 feed.
You can leave a response, or trackback from your own site.